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The problems of tsunami generation are treated by standard integral-transform 
and modified stationary-phase methods to yield asymptotic approximations to 
the surface disturbances. The effects of asymmetry are considered in a one- 
dimensional ocean. Series representations are used to produce sets of normal- 
mode oscillations in a two-dimensional ocean, and the magnitudes of the wave 
front and wave train are discussed in relation to the asymmetry of the generating 
region. 

1. Introduction 
A tsunami (sometimes called a seismic sea wave) in a seismically generated sea 

wave which often has catastrophic effects on near and distance coastal regions. 
It is largely a Pacific Ocean phenomenon, and for centuries its ravages have 
plagued Pacific civilizations; the first documented tsunami occurred in 173 A.D. 

(Iida, Cox & Pararas-Carayannis 1967). Japan, in particular, has suffered from 
these destructive waves but other Pacific regions have been attacked, while 
a large tsunami is usually observed throughout the whole Pacific Ocean. 

To minimize the loss of life and property, the Tsunami Warning Service was 
established by the United States Coast and Geodetic Survey and this system has 
been successful in issuing advanced warnings of the approach of a destructive 
tsunami. However, the Warning System cannot provide a reasonable prediction 
of tsunami run-up heights, this information being essential for the determination 
of zones of evacuation (Hwang & Divoky 1970). Two factors are necessary for 
accurate prediction of tsunami heights : information on the magnitude and distri- 
bution of the ground displacements caused by an earthquake, and a method of 
determining the surface waves resulting from this motion of the sea floor. 

This contribution addresses the second problem. However, it is recognized that 
determination of the actual ground motion is a very difficult problem requiring 
significant technological advances before accurate estimates can be obtained. 
Theoretical aspects of the wave generation problem reduce to the need to solve 
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a Cauchy-Poisson problem, which is usually handled in a region of constant 
depth. Webb (1962))  Van Dorn (1965) and Carrier (1971) have discussed the 
literature and compared results obtained for various simplified models of the sea- 
floor disturbance. Van Dorn (1965) has presented an analytic formulation based 
on the work by Kajiura (1963) for the distant surface amplitude due to an arbi- 
trary sea-floor disturbance in water of constant depth. Hwang & Divoky (1970) 
have used numerical methods on the basic hydrodynamic equations in a study of 
the Alaskan tsunami of 1964. They also dealt with an elliptic generating region 
on the sea floor, a feature of earthquakes which has been discussed by Hatori 
(1970). An analytic study of the sea waves produced by a relatively simple elliptic 
generating region has been carried out by van den Driessche & Braddock (1972a).  

All of the models discussed above lack flexibility in that they approximate 
only a few particular earthquakes and cannot be applied to more general bottom 
disturbances. In  this paper, the bottom motion is described by series of orthogonal 
functions and the resulting surface disturbance is expressed as a set of normal 
modes, which are discussed in detail. The nature of the orthogonal functions 
which are used ensures that quite complicated bottom disturbances can be 
accurately represented by only a few terms in the series. The important effects of 
the asymmetry of the generating region are also discussed in some detail. 

2. Formal solution of general problem 
Consider an incompressible inviscid fluid of infinite horizontal extent and 

constant depth h > 0 which is bounded above by a free surface. The Cartesian 
co-ordinate system Ox, y ,z is located on the bottom with Oz vertically up, and 
the free surface is at  

= C(X,Y,t)+h (1)  

for all t ,  where c(x, y,t) is the displacement of the fluid surface from its mean 
position. The fluid is assumed to be at rest for t 6 0, implying that 6 = 0 for 
t < 0. If the flow is assumed irrotational, the velocity potential @(x ,y, x ,  t )  
satisfies Laplace’s equation 

V 2 Q ( X ,  y, 2, t )  = 0 (2) 

in the region x,  y E ( - co, co), z E (0, C+h), t E (0, co). The linearized boundary 
conditions are 

Qtt+gQZ=0 ,  Q t = - g C  a t  z = h ,  ‘1 ( 3 )  
Qe = F(x ,  y, t )  at x = 0, J 

where the subscripts represent partial derivatives. Here it is assumed that the 
sea-floor disturbance can be modelled as a velocity distribution F(x,  y, t ) ,  
t E (0,  co), applied to the water at  z = 0. 

The solution to the above Cauchy-Poisson problem can be obtained using 
standard transform techniques (van den Driessche & Braddocli- 1 9 7 2 ~ ) .  Using 
a Laplace transform on t ,  giving the transform variable s, and Fourier transforms 
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on x and y, giving transform variables k and 1, the resulting surface displacements 

where r = (x, y), k = (Ic, 1 )  is the two-dimensional wavenumber, dk = (dk ,  d l ) ,  
the integral over s is an inverse Laplace transform and 

P(k,s) =/ymJmB(r,2)exp 0 (-ik.r-st)dtdr. 

The inverse Laplace transform may be evaluated by means of a suitable 
contour integral. Simple poles are located at s = & ia, where 

a = [glkl tanh(lklh)]h; 

these poles on the imaginary axis in the s plane lead to surface wave motions 
which are purely oscillatory, and which represent propagating wave trains. For 
those F(r, t )  which represent realistic disturbances of the sea floor the transforms 
P(k, s) are such that all poles are to the left of the imaginary axis in the s plane. 
These yield solutions which decay exponentially in time and which are generally 
of little importance. 

If only the residues from the poles at  s = & ia are considered, the oscillatory 
surface disturbances are given by 

exp(ik.r)  
6(x’ ” t ,  = 8n2 ‘s -m cosh (Ikl h) 

[P(k, ia) exp (id) + P(k, - ia) exp ( - id)] dk. (6) 

The terms exp [i( k . r & crt)] represent propagating wave motions on the surface 
of the water, and the functions 

$* = P(k,  & ia)/8n2 C O S ~  (Ikl h)  (7) 

are called the complex wave amplitudes. Explicit evaluation of the integrals 
occurring in (6) is generally very difficult and various approximate methods are 
used to obtain estimates of C(x, y, t ) .  These methods and results will be considered 
in detail in later sections of the paper. 

3. One-dimensional case 
Now consider the corresponding problem with only one horizontal dimension 

in which there is no y dependence in the system ( 2 )  and (3). The condition on the 
applied velocity at  the bottom is expressed in the form 

QB(x, z ,  t )  = F(x ,  t )  at z = 0. 

Then only one Fourier transform is required and the propagating surface dis- 
turbances corresponding to (6) are given by 

[ P ( k ,  ia) exp (id) + P ( k ,  - ia) exp ( -iat)] dk, ( 8 )  
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FIGURE 1. Graph of p(x) = (,y tanhX)b and its derivatives. 

where k is now a one-dimensional wavenumber and CT = [gk tanh (kh)]!~. The 
integrals occurring in (8) can be conveniently written in the form 

P ( k ,  ( -  l)"+liCT) 
exp [ i (kz+ ( -  1 ) ~ + ~ c r t ) ] d k  (n = 1,2). (9) 

I n  cosh(kh) 

The application of the method of stationary phase (Copson 1965, p. 33) to the 
I, is facilitated by setting 

g = x/t, $,(I%, 5) = k[+ ( - I)"+] o-(k) (n = 1,2), (10) 

where the &(k, ,$) are the phase functions of the integrals. The points k = k* at 
which the phase functions are stationary are determined by the conditions 

a#,/ak = o 
= 5 + ( - I)%+' d r / d k ,  

thus X / t  = ( -  l)"C,(k), (11)  

where C,(k) is the group velocity of the wave motion. The term ( -  1)" indicates 
the direction of propagation, to x = co for n = 1 and 2, respectively. Let 
x = kh and 

P(X) = (XtanhXP, (12) 

p(x) and its first three derivatives are given in figure 1. The function ~ ' ( 2 )  is a 
monotonic decreasing function which has a maximum value of 1 at x = 0 and 
tends to  zero as x -+ 00. 
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For 1x1 > t (gh):, there is no value of k* satisfying (1 l), and hence no stationary- 
phase point. Physically, the surface disturbance has yet to penetrate this region 
since 

14) I, = I‘ z 0, 

to order tk2. As x -+ CO, f ; ,  ,u’(x) and the higher derivatives tend to zero. For large t ,  
andz M 0, In+ 0 and the surface returns to its undisturbedstate. For intermediate 
values, there is one stationary-phase point E * ,  and the approximate values of the 
integrals are, where cr* = cr(k*) and x* = k*h, 

(15) 

The In thus represent propagating sinusoidal surface waves which decay as t-4. 
The approximations (15) are not valid near k* = 0, since near this point 

a2$,(k, LJ/ak2 M 0 (Copson 1965). Near the wave front at k* = 0, the asymptotic 
values of (9) are given by 

I, t-+r(+) h-:g-tzk3-~P(~, o), (16) 

where I?(+) is the gamma function with argument f. Thus the wave front decays 
more slowly than the main wave system and is more important than the following 
waves, 

The approximations (15) and (16) are valid provided that the function 
P(k*,  ( -  l)n+liv*) is not zero. If this function is zero, other approximations can 
be obtained (van den Driessche & Braddock 1972b), and they are generally of 
lower order in t. Realistic forms of F(x,t) are such that (15) remains a valid 
approximation to (9) for k* + 0, but it is easily shown that P(0,s)  is zero for 
asymmetric disturbances, i.e. if F(x,  t )  = - F( - x, t ) ,  then P(0, s) = 0. In such 
cases, 

I, z t-t( - i)nir(g) a~z&-*h-% (aPpk),,, ,  

and this is of lower order in t than the approximation above. Thus for an asym- 
metric generating region, the wave front decays more rapidly than the body of 
the wave given by (15). This represents a change in the relative importance of 
these two sections of the tsunami since, for other generating regions, the front 
given by (16) decays more slowly than the main wave system given by (15). 

A physical explanation is easily given in terms of monopole and dipole sources 
of water waves. The general case of a non-asymmetric generating region can be 
thought of as a monopole source of water waves where the wave front is dominant. 
The asymmetric case is represented by a dipole source comprising positive and 
negative monopole sources. The dominant sections of the wave fields from the 
compon.ent monopole sources, that is the wave fronts, effectively cancel. The 
body of the wave system is then dominant. 
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4. Two-dimensional case 
The two-dimensional case has been handled by several authors; references to 

the literature are given in the introduction. Some of these attacks use polar space 
co-ordinates coupled with an assumption of no angular dependence and certain 
features of the solution are lost by this assumption. Here the general Cartesian 
form (6) will be considered without this simplifying assumption. 

Equation (6) can be expressed in the form 

ax,  y, t )  = + (8n2)-l (PI + PZ), (17) 

where 

the plus and minus signs referring to Pl and Pz respectively. Transform (18) into 
polar co-ordinates by setting x = r cos 0, y = r sin 8, k = p cos 7, 1 = p sin 7,  
x = ph, p(x) = (x tanhX)* and p l (x )  = g*h-*p(X), then 

where @,(x,r) = F(Xh-lcos7, Xh-lsinq, 5 ipl(x)). 

Approximations to (17) are obtained by applying the method of stationary 
phase twice to the integrals Pl and Pz (van den Driessche & Braddock 19726). Let 

4*(x,7) = (rh-lxcos ( O - ? l ) ) / t  k P l ( X )  (20) 

be the phase functions. The points of stationary phase are then obtained from 
the conditions 

a+,la7 = 0, a+,/ax = 0. (21)  

The first condition yields stationary points at 7" = 6 and 8 + 7~ for values of 0 in 
the range [O,;.]. 

Consider fist the case 7" = 0; the second of conditions (21) yields 

r/ht = T pi(x); (22) 

note that this is the two-dimensional equivalent of (11). Now we require r > 0 
and t > 0, and q5+ does not yield a stationary-phase point in x for this particular 
case. Thus for 7" = 6, a stationary point x = x* is obtained only for Pz. In a similar 
manner, it is found that, for 7" = 8 + ;., there is a stationary-phase point only 
for Pl. 

In each case, the value x* is obtained from the equation 

r/t = ( g h ) t 4 3  
and the asymptotic values 
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are then obtained for the integrals. Once again this has produced a sinusoidal 
wave of complex amplitude but the wave train decays as t-l, or r-1: as is easily 
observed from (23 ) .  

The second derivatives q5Ltxx and q5&+,,, are zero at x* = 0 and the approxima- 
tions (24) are not validin this, the long-wave, limit. Further asymptotic estimates 
of Pl and P2 can be obtained by the method used by van den Driessche & Braddock 
(1972b),  and give 

Note that here the wave front and the wave train have the same order of magni- 
tude, namely t-1,  and compare this with the one-dimensional case, where the 
order of magnitude of the wave front differs from the order of magnitude of the 
main wave system. 

In a similar fashion to the one-dimensional case, the orders of the various parts 
of the waves can vary depending on where the function Pl(x, 7) attains its zeros, 
if any. Suppose that the stationary point (x*, 7") is at  a simple zero of Pl(x, 7)) 

pl, z t-12?rh-+h-~g-@l(0, 7"). ( 2 5 )  

The upper and lower signs refer to Pl and P2, respectively, and 7" = 0 + T for Pl, 
and 7" = 0 for P2. Note that Pl,2 are both O(t-2).  

When x* is small, near the long-wave limit, the approximations ( 2 5 )  are valid 
only if Pl(O,r*) + 0. Further asymptotic approximations can be obtained for 
the case Pl(O, v*) = 0 by first applying the stationary-phase principle to just the 
7 integral. This yields 

For x* w 0, coshX* % 1, expand P,(x,  7") in the form 

The integer m gives the order of the zero of Pl at x = 0. Substituting in the above 
integral and applying the stationary -phase principle to the x integral yields 

For large values of t ,  only the first term of (27 )  is required to obtain an adequate 
representation of the wave. For m = 0,  the first term of (27) reduces to ( 2 5 ) .  Also 
note that the order of magnitude of the wave front, i.e. t - fQ-l ,  steadily decreases 
as the degree m of the zero of Pl(x, 7*) at x = 0 increases. These last few approxi- 
mations have important applications in the next section, where a more flexible 
model of' the bottom disturbance is considered. 
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5. Modelling the bottom disturbance 
Many attempts have been made in an effort to model the bottom disturbance 

causing the wave motion (see the introduction and literature cited there). These 
models are inadequate for two reasons: first, the actual bottom motion is not 
completely understood, and second, relatively simple disturbances have been 
used and these lack flexibility. Methods of surmounting the second difficulty will 
be described in detail. 

Consider again the two-dimensional model which was formally solved in $ 2  
and assume that the applied bottom velocity can be expressed in the form 

m m m  

N x ,  Y, t )  = C E C, avLnD H,,(x) &(y)  LJt) exp 1 - + y2 + t)l. ( 2 8 )  

Here H,,,(x) is the Hermite polynomial of degree m, and L,(t) is the Laguerre 
polynomial of degreep. Note that the functions exp ( - &x2) H,(x) are even or odd 
ils m is even or odd, and form a complete set of orthogonal functions in the range 
x E ( - co, co). For a given function P(x, y ,  t )  the constants 

7?l= 0 n= 0 p = 0 

x exp [ - &(x2.+ y2+ t ) ]  d x d y d t .  (29) 

Por all realistic forms of the bottom velocity F(x ,  y, t ) ,  the factor 2”L+’L~r~!  n! 7r will 
ensure that the coefficients will decrease rapidly as m and n increase. Thus 
only a few terms of the expansions (28) are required to represent adequately the 
sea-floor disturbance produced by a tsunamigenic earthquake. 

Many authors have previously used the assumption that the bottom velocity 
can be separated in the form 

F(x ,  y ,  t )  = X ( x )  Y ( Y )  W) (30) 

(see Carrier 1971). Unfortunately most treatments of the above problems then 
assume explicit forms for the functions X ( x ) ,  Y ( y )  and T(t) .  Note that the form 
(30) is included in the expansion (28) and appears as a special class of the expan- 
sion. The expaiision (28) is, then, far more general than the explicit models 
previously treated and, by using the result (29) to  evaluate the constants CL,~,~,, 

can be applied to real data. 
Then on taking the appropriate Fourier and Laplace transforms of ( 2 8 )  

(Erd6lyi et al. 1954, p. 174; Titchmarsh 1937, p. 81) 

00 m or, 

P(k, s )  = 2n exp ( - 4 k .  k) C C arrLnp( - i)”+”H,,,(k)H,,(t) (s - i)p(s + $)-p-I. 
m = O  7L= 0 p =  0 

(31) 

The traiisient motion of the (m,n,p) component of the surface disturbance 
corresponding to (4) arises from the pole of order p + 1, which occurs at s = - $. 
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This transient motion is given by 

I m m m  

(32) 

but this will not be explicitly evaluated. 
The propagating surface disturbances are giver1 by 

1 m m m  

Cp(z,~,t) = - Z C C a,Ln~(-i)m+'LCpl+y2), (33) 4n m = ~  n=o p= 0 

where Pl and P2 have been transformed into polar co-ordinates ( x , ~ )  and are 
given by 

$* are given by (20) and where 

} (35) 
$* = +_ k2(ip,(x) T &)p(i,ul(x) f: +)-p-Iexp ( - &x2/h2), 

O;(x, 9) = Hm(xZr1 COST) H, (x72-l sin?). 

The propagating surface motions have been represented as the sum of a set of 
normal modes of oscillation defined by the PI and P2. The analysis of 5 4 is applic- 
able to the integrals (34), but the evaluation of the integrals is facilitated by first, 
discussing the zeros of the functions x$*((x) and O z ( x ,  7). Since @*(x) does not 
have any real zeros, xyF*((x) has a simple zero at  x = 0. The other zeros and poles 
of $&(x) correspond to complex values of 2, and these do not affect the asymptotic 
estimation of Pl and Pz. 

The zeros z,, (v = 1,2,3,  . .., n) of the Hermite polynomial H,(z) are real and 
dist,inct (Sansone 1959, p. 310). The function H,(xh-l sin T ) ,  and hence Og(x, q ) ,  
is zero on the set of straight lines 

Xsinr = hz,, ( v  = 1,%, ..., n),  ( 3 6 )  

in the ,y, r/ plane. Similarly the function H,,(xh-l cos 7)  is zero on the set of straight 
lines 

XCOS?  = hx,, (v = 1 , 2 ,  ...) 7/L). (37) 

Hence the zeros of O;(x, q )  are all simple, except where the above lines intersect. 
At such points there is a double zero. Now H,(O) is zero if n is odd, but isnon-zero 
if n is even. Then O;(x, y) may be non-zero or have a simple or a double zero at  
(x, 7 )  = (0,O) depending on whether m and n are even, one of m and n is odd, or 
both are odd. 

Provided that the stationary-phase point (x*, 7") is not near a zero of OE(x, r ) ,  
then Pl and Pz are given by (24), with 

P,(X*, q * )  = hZ$*(x*) @ ; ( x ~ ~ ,  a*). (38) 
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Conditions on 
(x*, v*), rn and n Order Equation 

Main wave, x* not small, (x*, r*) not near a zero point t-1 (24) 
m, n arbitrary \(x*, 7") a t  a zero point t -2 (26) 

m and n even 
rn odd, n even 
n odd, m even 
m odd, n odd 

Wave front, ?I* c 0 

TABLE 1 

If (x*, r*) is near a simple zero, then PI, 2, which are of order tk2 ,  are given by (26). 
Near the wave front at x* = 0, are given by the first term in (27) and the 
corresponding orders of magnitude are given in table 1. 

It can be seen that the nature of the wave front depends critically on the 
asymmetry properties of the generating region while the zeros of Oz(x,r) give 
rise to a complicated interference pattern within the main wave train. The space 
curves in polar co-ordinates ( r , B )  along which the lower amplitude waves are 
found are obtained from (23), (36) and (37), and are given by 

or I r/t(gh)& = p'(a/cos~*), 

r/t(gh)* = ,.u'(b/sin 7"). (39) 

The constants a and b are determined from the water depth h and the particular 
zero of O$(x, r )  which is being considered. 

Figure 2 shows the space curves on which the wave amplitude is O ( t P ) ,  for 
w = a,  or b, taking the values 0.2, 0.6 and 1.0. In the figure, radial distances are 
in units of r/t(gh)l ,  with the wave front at r/t(gh)B = I. The higher values of w 
correspond to greater values of the water depth h, and the larger zeros of the 
Hermite polynomials. The corresponding curves are grouped close to the origin. 
Lower values of w correspond to shallow water and the smaller zeros, the 
corresponding curves reaching out towards the wave front. 

6.  Conclusions 
The standard techniques o f  integral transforms and the stationary-phase 

principle provide asymptotic estimates of the magnitude of a tsunami produced 
by sea-floor disturbances. The tsunami consists of a dispersive wave train pre- 
ceded by a non-dispersive wave front travelling as a long ocean wave. The relative 
order of magnitude of the train and the wave front depends on the degree of 
symmetry or asymmetry of the bottom disturbance. In an ocean with only one 
horizontal co-ordinate, the wave train is O(t-&), while the front is O(t-*) for a 
general (not asymmetric) bottom disturbance. However, if the bottom disturb- 
ance is asymmetric, the front is O(t-%), and the relative importance oi the front 
and the wave train is reversed. 
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6 0 
r / t (gh)  

R = ?  n 

FIGURE 2. Curves in the SpaCQ plane on which the wave amplitude is O(t-2). 
, w = 1.0. __ w = 0.2. ---, w = 0 .6 ; .  .... 

I n  an ocean with two horizontal co-ordinates, the bottom disturbance is 
expressed as series of orthogonal functions, and a set of normal modes of oscilla- 
tion of the sea surface is produced. Again a wave train is produced and it is 
usually O(t-l). However, a complicated interference pattern is apparent in each 
mode. The nature of the wave front again depends on the degree of asymmetry 
in the particular term of the series representing the bottom motion. 
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